Lagoon Creek Resources Pty Ltd
ABN 27 110 829 751

2016/17 MINING MANAGEMENT PLAN

Lagoon Creek

EL23573

Authorisation 0332-01
TABLE OF CONTENTS

1 INTRODUCTION ... 5
 1.1 PROJECT NAME AND LOCATION ... 5
 1.2 MINING INTERESTS ... 7
 1.3 OPERATOR DETAILS ... 8
 1.4 STATUTORY REQUIREMENTS .. 9
 1.4.1 Northern Territory ... 9
 1.4.2 Commonwealth ... 10
 1.4.3 Other .. 10
 1.5 NON-STATUTORY REQUIREMENTS .. 10
 1.6 IDENTIFIED STAKEHOLDERS .. 11
 1.6.1 Consultation with landowners .. 11

2 PROJECT DETAILS ... 12
 2.1 HISTORY OF DEVELOPMENT AND CURRENT STATUS ... 12
 2.2 PROPOSED ACTIVITIES ... 15
 2.2.1 Mapping, Sampling, Anomaly Evaluation .. 16
 2.2.3 Earthmoving ... 16
 2.2.4 Drilling ... 17
 2.2.4.1 Diamond Drilling .. 17
 2.2.4.2 Reverse Circulation Drilling ... 18
 2.2.5 Downhole Geophysical Logging .. 19
 2.2.6 Sample Analysis and Treatment .. 19
 2.2.7 Campsite Maintenance ... 19
 2.3 TARGETED MINERALS ... 19
 2.4 WORKFORCE ... 19
 2.5 SITE INFRASTRUCTURE & LOCATION ... 19
 2.6 TRANSPORT AND SITE ACCESS .. 23

3 EXISTING ENVIRONMENT .. 24
 3.1 LAND AREA TYPE ... 24
 3.2 GEOLOGY ... 24
 3.3 HYDROLOGY .. 24
 3.4 FLORA & FAUNA ... 24
 3.5 CURRENT LAND USE .. 25
 3.6 HISTORICAL, ABORIGINAL, HERITAGE SITES ... 26

4 ENVIRONMENTAL MANAGEMENT .. 27
 4.1 ENVIRONMENTAL MANAGEMENT SYSTEM .. 27
 4.1.1 Environmental Policy ... 28
 4.1.2 Environmental Aspects and Impacts .. 28
 4.1.3 Objectives and Targets ... 33
 4.1.4 Induction and Training .. 33
 4.1.5 Consultation .. 34
 4.1.6 Emergency Procedures and Incident Reporting ... 34
 4.1.7 Environmental Audits and Inspections ... 35
 4.1.8 Documentation ... 36
 4.2 ENVIRONMENTAL MANAGEMENT PLAN .. 36
 4.2.1 Water Management ... 36
4.2.2 Weed Management Plan ... 37
4.2.3 Flora & Fauna Management .. 38
4.2.4 Waste Management .. 38
4.2.5 Noise & Air Quality Management .. 39
4.2.6 Cultural & Heritage Management ... 39
4.2.7 Hazardous Material & Hydrocarbons Management (not Radiation) ... 40
4.2.8 Radiation Management .. 40
4.3 Environmental Performance Reporting ... 45

5 Exploration Rehabilitation ... 46

5.1 Status of Current Rehabilitation & Rehabilitation Activities Conducted ... 46
5.2 Rehabilitation Planning and Monitoring ... 47
5.3 Topsoil Management ... 48
5.4 Revegetation Methods .. 48
5.5 Fire Management ... 48
5.6 Closure Planning .. 48
5.6.1 Drill sites and tracks .. 48
5.6.2 Camp Site ... 49
5.7 Costing of Closure Activities ... 49

Tables
Table 1: Lagoon Creek Project Exploration Licence ... 7
Table 2: Lagoon Creek Resources Contact Details .. 8
Table 3: Proposed 2016/17 Lagoon Creek Exploration Schedule .. 15
Table 4: Environmental Aspects and Impacts ... 29
Table 5: Radiation Risk and Mitigation Matrix ... 43

Figures
Figure 1: Tenement and Camp Caroline Location Plan .. 5
Figure 2: Tenement Plan ... 6
Figure 3: Lagoon Creek Resources’ Tenements .. 7
Figure 4: Camp Caroline Aerial View .. 21
Figure 5: Campsite Layout and Infrastructure Plan ... 22

Appendices
Appendix 1: EL23573 Tenement Report .. 50
Appendix 2: Flora and Fauna Report .. 51
Appendix 3: Land Title Searches .. 52
Appendix 4: Register Inspection Report from AAPA ... 53
Appendix 5: Native Title Search ... 54
Appendix 6: Incident Reporting Form .. 55
Appendix 7: Radiation Management Plan .. 56
AMENDMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Text and Figure 3</td>
</tr>
<tr>
<td>1.2</td>
<td>Table 1</td>
</tr>
<tr>
<td>1.3</td>
<td>Update of chart and contact details</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Update, landholder agreement</td>
</tr>
<tr>
<td>2</td>
<td>Update of exploration undertaken by LCR</td>
</tr>
<tr>
<td>5.1</td>
<td>Status of Current Rehabilitation</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>2016 report</td>
</tr>
<tr>
<td>Appendix 8</td>
<td>2010 Drill Program rehabilitation</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

1.1 Project Name and Location

Lagoon Creek Resources Pty Ltd (LCR) is a 100% owned Australian subsidiary of Laramide Resources Ltd, a company listed on the Toronto Stock Exchange (TSX) and more recently the Australian Stock Exchange (ASX). LCR is predominantly focused on uranium exploration and has exploration licenses in the Northern Territory and Queensland.

Exploration Licence 23573 was applied for by Arafura Resources NL in 2002 and the title was granted on 23rd December 2003. In 2005, Arafura entered an agreement with Lagoon Creek Resources, whereby Lagoon Creek Resources can earn an interest in EL23573. Title was transferred to NuPower Resources on 14th March 2007 as a result of the demerger process and formation of the new company. NuPower Resources has been subsequently renamed Central Australian Phosphate (CAP). LCR is conducting exploration on EL23573 under the JV agreement with CAP; CAP has also recently been taken over by Rum Jungle Resources Ltd. The tenements details are summarised in Table 1.

EL23573 is adjacent to the Queensland border, approximately 250km south-east of Borroloola, within the Wollogorang Station pastoral holding. Access is via the highway from Doomadgee to Borroloola and thence via station tracks. The tenement location plan is shown on Figure 1.
Most exploration undertaken on EL23573 will be based out of LCR’s Camp Caroline located within EL29898. The location of the Camp is shown on Figure 1. LCR operate several exploration permits for minerals (EPMs) in Queensland and exploration licenses (ELs) in the Northern Territory which utilise Camp Caroline. These include EPMs 14558, 14672 and 14967 in Queensland, and ELs 9319, 9414, 23573, and 29898 in the Northern Territory. Please refer to Figure 3 for a map showing the location of Lagoon Creek Resources’ tenements.
1.2 Mining Interests

Table 1: Lagoon Creek Project Exploration Licence

<table>
<thead>
<tr>
<th>Exploration License (EL)</th>
<th>Title Holders</th>
<th>Date of Grant</th>
<th>Expiry Date</th>
<th>Area (Sub-blocks)</th>
<th>Area (sq km)</th>
<th>Current Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>23573</td>
<td>Lagoon Creek Resources Pty Ltd (50%) & Central Australian Phosphate Ltd (50%)</td>
<td>23/12/2003</td>
<td>22/12/2017</td>
<td>65 SBKS</td>
<td>189.8</td>
<td>Year 13</td>
</tr>
</tbody>
</table>

A Tenement Report extract from DME TIS is attached as Appendix 1.
1.3 Operator Details

Key contact details for LCR who are conducting exploration on EL23573 are provided in Table 2.

An organisational chart for Lagoon Creek Resources is provided below:

Table 2: Lagoon Creek Resources Contact Details

<table>
<thead>
<tr>
<th>Street Address:</th>
<th>Level 3, 445 Upper Edward St, Spring Hill, QLD, 4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postal Address:</td>
<td>PO Box 103, Spring Hill, QLD, 4004</td>
</tr>
<tr>
<td>Phone:</td>
<td>(07) 3831 3407</td>
</tr>
<tr>
<td>Key Personnel:</td>
<td>Bryn Jones: Chief Operating Officer</td>
</tr>
<tr>
<td></td>
<td>bryn.jones@lcrpl.com.au</td>
</tr>
</tbody>
</table>
1.4 Statutory Requirements

The following list all relevant legislation, codes and other statutory obligations related to the tenement detailed in section 1.2.

1.4.1 Northern Territory

Current Northern Territory legalisation which may be applicable includes:

- Aboriginal Land Act 2013;
- Bushfires Act 2013 and Regulations 2013;
- Dangerous Goods Act 2012 and Regulations 2012;
- Environmental Offences and Penalties Act 2011;
- Heritage Act 2014 and Regulations 2012;
- Mineral Titles Act 2014 and Regulations 2011;
- Mining Management Act 2013 and Regulations 2013;
- Northern Territory Aboriginal Sacred Sites Act 2013 and Regulations 2013;
- Pastoral Land Act 2014 and Regulations 2013;
- Plant Health Act 2008 and Regulations 2012;
- Radiation Protection Act 2012 and Regulations 2012;
- Radioactive Ores and Concentrates (Packaging and Transport) Act 2011 and Regulations 2010;
- Waste Management and Pollution Control Act 2013;
- Water Act 2013;
- Weeds Management Act 201; and Regulations 2013; and
- Work Health and Safety (National Uniform Legislation) Act 2011; and Regulations 2011;
1.4.2 Commonwealth

Commonwealth legislation which may be applicable includes:

- *Aboriginal Land Rights (NT) Act 1976*;
- *Native Title Act 1993*;
- *Atomic Energy Act 1953*;
- *Environment Protection and Biodiversity Conservation Act 1999*.

1.4.3 Other

Other statutory requirements, Codes, Guides and so on relevant to EL23573 include the following:

- *Code of Practice for Safe Transport of Radioactive Materials 2008, ARPANSA*;
- *Code of Practice for Radiation Protection and Radioactive Waste Management in Mining and Mineral Processing 2005, ARPANSA*;
- *Reporting of employment/injury and safety statistics to NT WorkSafe*;
- *Reporting of environmental incidents to DME*.

LCR keeps abreast of the latest statutory requirements from a combination of regular referral and checking of the Northern Territory Government website and advice from tenement consultants Australian Mining and Exploration Titles Services (AMETS).

1.5 Non-Statutory Requirements

Lagoon Creek Resources has a Joint Venture over the tenement with Central Australian Phosphate Limited (CAP). CAP was taken over by Rum Jungle Resources Ltd in early 2014. Each Joint Venture partner holds a 50% interest and Lagoon Creek is the operator.

When exploring in the tenement region LCR also interacts with the local indigenous groups. The tenement was granted through the Native Title expedited process and LCR has received an AAPA certificate covering the tenement which gives details on sacred sites and any additional exploration conditions. When LCR operate in the area local Traditional Owners are generally employed who can advise with cross cultural training, protection of sacred sites and environmental protection.
1.6 Identified Stakeholders

The following people and organisations have an interest in, or may be affected by the Lagoon Creek project:

- Aboriginal Traditional Owners;
- Pastoral landholders - the tenement is situated on Wollogorang Station, NT Portions 674 (PPL1113);
- Northern Land Council;
- Weeds Management Branch, NT Department of Land Resource Management (DLRM);
- Minerals and Energy, NT Department of Mines and Energy (DME);
- Bush Fires Council of the NT;
- NT WorkSafe.

1.6.1 Consultation with landowners

LCR has contact with Traditional Owners and pastoral lease owners prior to and during exploratory activities. Contact is generally made through a combination of telephone calls, emails and meetings in person.

An exploration access agreement with the pastoral lease holder, Wollogorang Cattle Company Pty Ltd, is in place, and evidence has been provided to the Department.
2 PROJECT DETAILS

2.1 History of Development and Current Status

Historical Exploration

Prior to this area being granted as EL23573 a number of exploration companies had undertaken exploration in the same area. Exploration research, including historical report reviews, provides information of this historical disturbance which has been conducted across the licence area, particularly around the El Hussen and North-East Westmoreland prospects. The work dates back to at least the mid-1950’s where significant work, including drilling, costeanning, and bulldozing, was undertaken.

LCR Exploration:

2006:

LCR undertook RC drilling at the North-East Westmoreland prospect between October and November 2006. The drilling is detailed in the table below.

<table>
<thead>
<tr>
<th>Hole_#</th>
<th>AGD84_X</th>
<th>AGD84_Y</th>
<th>Azimuth (mag)</th>
<th>Dip</th>
<th>RL</th>
<th>Final depth</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>815943</td>
<td>8058384</td>
<td>135</td>
<td>-55</td>
<td>131</td>
<td>51</td>
<td>RC</td>
</tr>
<tr>
<td>201</td>
<td>816023</td>
<td>8058441</td>
<td>135</td>
<td>-55</td>
<td>130</td>
<td>51</td>
<td>RC</td>
</tr>
<tr>
<td>202</td>
<td>816126</td>
<td>8058351</td>
<td>135</td>
<td>-55</td>
<td>130</td>
<td>51</td>
<td>RC</td>
</tr>
<tr>
<td>203</td>
<td>816034</td>
<td>8058290</td>
<td>135</td>
<td>-55</td>
<td>133</td>
<td>51</td>
<td>RC</td>
</tr>
<tr>
<td>204</td>
<td>817119</td>
<td>8059191</td>
<td>135</td>
<td>-55</td>
<td>125</td>
<td>195</td>
<td>RC</td>
</tr>
<tr>
<td>205</td>
<td>817149</td>
<td>8059140</td>
<td>135</td>
<td>-55</td>
<td>126</td>
<td>62</td>
<td>RC</td>
</tr>
<tr>
<td>206</td>
<td>817188</td>
<td>8059124</td>
<td>135</td>
<td>-55</td>
<td>128</td>
<td>131</td>
<td>RC</td>
</tr>
<tr>
<td>207</td>
<td>817148</td>
<td>8059194</td>
<td>180</td>
<td>-55</td>
<td>125</td>
<td>176</td>
<td>RC</td>
</tr>
<tr>
<td>208</td>
<td>817464</td>
<td>8059482</td>
<td>135</td>
<td>-55</td>
<td>121</td>
<td>145</td>
<td>RC</td>
</tr>
<tr>
<td>209</td>
<td>817506</td>
<td>8059580</td>
<td>135</td>
<td>-55</td>
<td>119</td>
<td>131</td>
<td>RC</td>
</tr>
<tr>
<td>210</td>
<td>817816</td>
<td>8059694</td>
<td>135</td>
<td>-55</td>
<td>117</td>
<td>69</td>
<td>RC</td>
</tr>
<tr>
<td>211</td>
<td>817787</td>
<td>8059723</td>
<td>135</td>
<td>-55</td>
<td>117</td>
<td>178</td>
<td>RC</td>
</tr>
<tr>
<td>212</td>
<td>817719</td>
<td>8059790</td>
<td>135</td>
<td>-55</td>
<td>117</td>
<td>84</td>
<td>RC</td>
</tr>
<tr>
<td>213</td>
<td>817165</td>
<td>8059147</td>
<td>135</td>
<td>-65</td>
<td>126</td>
<td>126</td>
<td>RC</td>
</tr>
<tr>
<td>214</td>
<td>817088</td>
<td>8059222</td>
<td>135</td>
<td>-60</td>
<td>125</td>
<td>186</td>
<td>RC</td>
</tr>
<tr>
<td>215</td>
<td>817239</td>
<td>8059072</td>
<td>135</td>
<td>-75</td>
<td>128</td>
<td>180</td>
<td>RC</td>
</tr>
<tr>
<td>216</td>
<td>817150</td>
<td>8059233</td>
<td>180</td>
<td>-55</td>
<td>124</td>
<td>180</td>
<td>RC</td>
</tr>
<tr>
<td>217</td>
<td>817326</td>
<td>8059151</td>
<td>135</td>
<td>-63</td>
<td>126</td>
<td>204</td>
<td>RC</td>
</tr>
<tr>
<td>218</td>
<td>817256</td>
<td>8059258</td>
<td>180</td>
<td>-55</td>
<td>123</td>
<td>180</td>
<td>RC</td>
</tr>
<tr>
<td>219</td>
<td>817150</td>
<td>8059084</td>
<td>180</td>
<td>-55</td>
<td>128</td>
<td>120</td>
<td>RC</td>
</tr>
<tr>
<td>220</td>
<td>817837</td>
<td>8059674</td>
<td>195</td>
<td>-75</td>
<td>118</td>
<td>84</td>
<td>RC</td>
</tr>
<tr>
<td>221</td>
<td>817600</td>
<td>8059573</td>
<td>180</td>
<td>-55</td>
<td>119</td>
<td>99</td>
<td>RC</td>
</tr>
<tr>
<td>222</td>
<td>816875</td>
<td>8058894</td>
<td>180</td>
<td>-65</td>
<td>131</td>
<td>84</td>
<td>RC</td>
</tr>
</tbody>
</table>
2007:

LCR undertook diamond drilling at the North-East Westmoreland and El Hussen prospects between June and August 2007. The drilling is detailed in the tables below. In addition, LCR undertook a helicopter-borne regional stream sediment sampling programme.

<table>
<thead>
<tr>
<th>Hole_#</th>
<th>AGD84_X</th>
<th>AGD84_Y</th>
<th>Azimuth (mag)</th>
<th>Dip</th>
<th>RL</th>
<th>Final depth</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>223</td>
<td>817767</td>
<td>8059742</td>
<td>135</td>
<td>-55</td>
<td>n/a</td>
<td>200</td>
<td>DC</td>
</tr>
<tr>
<td>224</td>
<td>817742</td>
<td>8059768</td>
<td>135</td>
<td>-55</td>
<td>n/a</td>
<td>300</td>
<td>DC</td>
</tr>
<tr>
<td>225</td>
<td>817951</td>
<td>8060015</td>
<td>135</td>
<td>-55</td>
<td>n/a</td>
<td>200</td>
<td>DC</td>
</tr>
<tr>
<td>226</td>
<td>818003</td>
<td>8059967</td>
<td>135</td>
<td>-55</td>
<td>n/a</td>
<td>221.2</td>
<td>DC</td>
</tr>
<tr>
<td>227</td>
<td>816882</td>
<td>8058890</td>
<td>135</td>
<td>-55</td>
<td>n/a</td>
<td>201</td>
<td>DC</td>
</tr>
<tr>
<td>228</td>
<td>816899</td>
<td>8058870</td>
<td>135</td>
<td>-55</td>
<td>n/a</td>
<td>152</td>
<td>DC</td>
</tr>
<tr>
<td>229</td>
<td>817137</td>
<td>8059173</td>
<td>135</td>
<td>-55</td>
<td>n/a</td>
<td>152</td>
<td>DC</td>
</tr>
<tr>
<td>230</td>
<td>817101</td>
<td>8059212</td>
<td>135</td>
<td>-57</td>
<td>n/a</td>
<td>200</td>
<td>DC</td>
</tr>
<tr>
<td>231</td>
<td>816842</td>
<td>8058928</td>
<td>135</td>
<td>-55</td>
<td>n/a</td>
<td>181.5</td>
<td>DC</td>
</tr>
<tr>
<td>205Tail</td>
<td>817149</td>
<td>8059140</td>
<td>135</td>
<td>-55</td>
<td>n/a</td>
<td>146</td>
<td>DC</td>
</tr>
<tr>
<td>210Tail</td>
<td>817816</td>
<td>8059694</td>
<td>135</td>
<td>-55</td>
<td>n/a</td>
<td>191</td>
<td>DC</td>
</tr>
<tr>
<td>212Tail</td>
<td>817719</td>
<td>8059790</td>
<td>135</td>
<td>-55</td>
<td>n/a</td>
<td>200.1</td>
<td>DC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole_#</th>
<th>AGD84_X</th>
<th>AGD84_Y</th>
<th>Azimuth (mag)</th>
<th>Dip</th>
<th>RL</th>
<th>Final depth</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHS_3</td>
<td>803078</td>
<td>8058765</td>
<td>65</td>
<td>-50</td>
<td>197</td>
<td>136.5</td>
<td>DC</td>
</tr>
<tr>
<td>EHS_4</td>
<td>803113</td>
<td>8058780</td>
<td>245</td>
<td>-58</td>
<td>195</td>
<td>150.5</td>
<td>DC</td>
</tr>
<tr>
<td>EHS_5</td>
<td>803163</td>
<td>8058586</td>
<td>235</td>
<td>-70</td>
<td>191</td>
<td>151.5</td>
<td>DC</td>
</tr>
<tr>
<td>EHS_6</td>
<td>802997</td>
<td>8058766</td>
<td>57</td>
<td>-52</td>
<td>215</td>
<td>118.6</td>
<td>DC</td>
</tr>
<tr>
<td>EHS_7</td>
<td>802948</td>
<td>8058751</td>
<td>68</td>
<td>-63</td>
<td>215</td>
<td>151</td>
<td>DC</td>
</tr>
</tbody>
</table>

2008:

A preliminary review of the exploration model was undertaken.

2009:

A further and more extensive review of the controls of the distribution and grade of uranium mineralisation was undertaken.

2010:

In early August 2010, LCR undertook a diamond drilling program. The 2010 drill hole locations are detailed in the table below. In addition, small-scale soil and stream sediment sampling was also undertaken.

<table>
<thead>
<tr>
<th>Hole_#</th>
<th>AGD84_X</th>
<th>AGD84_Y</th>
<th>Azimuth (mag)</th>
<th>Dip</th>
<th>RL</th>
<th>Final depth</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTDD10-009</td>
<td>812,546</td>
<td>8,058,819</td>
<td>266</td>
<td>-60</td>
<td>144.68m</td>
<td>146.0m</td>
<td>DC</td>
</tr>
<tr>
<td>NTDD10-010</td>
<td>812,972</td>
<td>8,058,583</td>
<td>131</td>
<td>-60</td>
<td>145.69m</td>
<td>130.8m</td>
<td>DC</td>
</tr>
</tbody>
</table>
2011:

A Versatile Time Domain Electromagnetic (VTEM) airborne geophysical survey was commenced, however, after mobilising to site the survey had to be temporarily postponed until the following year due to unforeseen circumstances beyond LCR’s control and onset of the wet season.

2012:

The VTEM survey recommenced and was completed. Due to availability, the survey was carried out between 15 and 26 October. In view of the survey recommencement delay, and onset of the wet season, follow-up ground work could not be completed.

2013:

Parent company Laramide Resources completed a dual listing on the ASX, commencing trade on 30 April 2013. Whilst the protracted ASX listing period was undertaken, and due to market circumstances following the listing, on-ground exploration was inhibited and as such LCR was not able to get on to the ground.

2014:

LCR undertook an office-based geological targeting review.

2015:

A mineral systems review commenced with analysis of drill core and database interrogation. In addition, a VTEM anomaly was briefly visited in the field and rock chips taken around it.

2016:

No ground work was undertaken. VTEM results were further analysed by a contractor and plans made for site activities however these were delayed and not expected to be undertaken until early 2017.
2.2 Proposed Activities

During the course of the 2016/17 exploration programme, it is anticipated that the following activities may be undertaken:

- Mapping reconnaissance, spectrometer surveying, and rock chip / soil / stream sediment sampling;
- Track re-establishment and drill pad construction (to be confirmed);
- Diamond/RC drilling of warranted targets (to be confirmed);
- Core sampling and chemical analysis (to be confirmed);
- Rehabilitation and monitoring.

The proposed schedule of exploration works to be undertaken during 2016/17 is shown in Table 3.

In view of the targets derived from the VTEM data, it is considered that initial work (i.e. mapping reconnaissance, spectrometer surveying, rock chip / soil / stream sediment sampling) will be very low impact. If suitable drilling targets are found from the initial sampling, it is anticipated that drilling a minimum of 2 drill holes will be undertaken. It should be noted that the specific areas studied will be under continuing review based on progressive exploration results. In addition, as the location of proposed drill pads has yet to be determined, a proposed drill plan addendum will be submitted to DME for approval prior to any significant disturbance being undertaken.

The timing of activities may change as a result of a number of factors including:

- The outcomes of work programme meetings;
- Discussions with the Traditional Owners;
- The availability and timing of equipment.

Table 3: Proposed 2016/17 Lagoon Creek Exploration Schedule

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration of Activity</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream sediment sampling</td>
<td>At various times</td>
<td>Estimated up to 50 samples as warranted</td>
</tr>
<tr>
<td>Soil sampling with spectrometer surveying</td>
<td>At various times</td>
<td>Estimated 200 – 500 samples</td>
</tr>
</tbody>
</table>
2.2.1 Mapping, Sampling, Anomaly Evaluation

LCR intends to undertake geological mapping/reconnaissance, which involves field identification of different rock types, their relationship to each other, outcrop characteristics and structural setting. Locations of mapped features and samples will be recorded by GPS. Access during mapping activities will be normally on foot, 4 wheel bikes, 4WD vehicle or a combination of all.

As well as mapping, sampling of various media will be then carried out by geologists and/or support staff. This is a relatively low impact activity and results in little or no effect on the environment. The types of material sampled may include rock, soil and various types of alluvium. With regard to stream sediment sampling, material will be sampled which passes through a 2-3mm aluminium sieve will be sampled; approximately 2 x 2kg identical samples will also be taken at each sampling location.

Handheld spectrometers and/or scintillometers will be used to measure the radioactivity of both the samples collected and the naturally occurring background radiation.

2.2.3 Earthmoving

To keep disturbance to a minimum, it is considered likely that proposed drill pads will be located over already existing tracks. Earthmoving equipment will be utilised for the construction / light blading of drill pads.

To allow drill rig access and operation, a small area surrounding each drill site will be cleared. Sticks and large rocks will be removed and where possible all mature trees will be avoided. On average drill pad clearing will be approximately 25m x 25m per hole to allow safe operation of the drill rigs and access for support equipment. However the size of the drill pad area will depend on the size of the rig and support vehicles being used and the nature of the topography.

In ground sumps may be required for the drilling activities, these are typically small pits.
installed with a front end loader. Specific details of sumps are provided in the drilling section to follow.

Re-establishment of access tracks and construction / light blading (using blade up methods) of drill sites will be conducted using a grader and/or front-end loader. The type of earthmoving equipment used will depend upon the type of access or works required. This methodology of access clearing has had little environmental effect on the country. The proposed track length is currently unknown until ground work has established suitable drill targets. When drill targets have been selected, a MMP addendum will be submitted to DME.

2.2.4 Drilling
A drill crew typically consists of three personnel per shift and a supervisor. The drill rig may be accompanied by up to three other vehicles; one or two support trucks, which will carry fuel, water, spare equipment, drill rods, and a 4WD utility or light truck used as personnel transport. Drilling contractors to be used have not yet been finalised by LCR.

2.2.4.1 Diamond Drilling
Diamond-core drilling has been the most commonly utilised form of drilling at Westmoreland by LCR. Both truck mounted and helicopter-supported drill rigs have been used, the latter for sites which are inaccessible to conventional wheeled vehicles. Diamond-core drilling requires water, which will be sourced locally and pumped via poly-pipe when available, or brought to site via a water truck. Typically a single diamond drill hole will take 1-2 days to drill with two crews working alternate 12 hour day and night shifts.

As with most forms of drilling, a small area surrounding the drill hole is cleared to allow the rig to operate. Sticks and rocks will be removed, with all mature trees left where-ever possible. On average a clearing of 25m x 25m in area would be required to safely drill a core hole. The size of the area will vary with the size of the rig and support trucks being used and the nature of the country.

Diamond drilling requires the use of either an in-ground sump or above ground tanks to contain drilling fluids. Sumps are sealed with a biodegradable polymer to prevent fluid loss and soil contamination during the drilling process. In the event that a drill hole produces significant amounts of water, water may be discharged into bushland after settling to remove sediment. In all cases, water will not be allowed to report to natural drainage lines. Collected sediment is buried in the drill sump upon final
rehabilitation. In the event that drilling also intersects significant uranium mineralisation, the discharge of water will be assessed on a risk basis and contained in a sump as required.

2.2.4.2 Reverse Circulation Drilling

RC (Reverse Circulation) is a track or truck mounted deep air drilling method with the larger rigs capable of several hundred metres in optimum conditions. This drilling uses a hammer bit which breaks up the rock to continue drilling, with samples returning to surface within an inner tube, inside of the rods.

RC drilling can be used to quickly, economically and progressively confirm stratigraphic interpretations based on geological mapping and geophysical surveys conducted, other geophysical data and progressive drilling results.

All RC drill rigs working on site will be fitted with dust suppression. Dust suppression can be achieved in several ways but typically involves directing all sample return into a cyclone splitter, which then funnels material into a drum which can then be manually opened and the material collected in a plastic/calico bag or bucket. A rotating cone within the splitter allows small (1-2kg) samples to be separated from the bulk of the sample (30kg per drilled metre) to be sent for geochemical testing if required.

Radiation monitoring using a scintillometer will be used to determine the level of radioactivity (if any) during drilling operations. Cuttings from RC drilling will be collected and geologically logged at the drill site. Representative cuttings (<100g) of each metre drilled will be put into plastic chip trays and subsequently stored as a permanent record. Selected intervals will be submitted for geochemical analysis as necessary.

Given the considerable variety in the size of air drilling rigs, there is commensurate variation in the area required to be cleared for each hole. In all cases mature trees will be left where-ever possible and any land clearing minimised.

In general air drilling methods do not require large amounts of water, with small amounts (<500 litres per day) required for dust suppression. In the event that a drill hole produces significant quantities of water, the water will be passed through a sediment trap and then allowed to disperse to bushland. In all cases water will not be allowed to report to natural drainage lines. In the event that drilling also intersects significant uranium mineralisation, the discharge of water will be assessed on a risk
basis and contained in a sump as required.

2.2.5 Downhole Geophysical Logging
Completed drill holes may be probed with a geophysical instrument to take gamma concentration measurements. This involves lowering of a probe at the end of a winch cable down the holes and recording data digitally.

2.2.6 Sample Analysis and Treatment
Core-processing, involving geological logging and cutting and bagging of samples for analysis, is conducted at Camp Caroline. Most of the drill core is stored at the campsite on pallets.

2.2.7 Campsite Maintenance
The campsite is open for part of the year, as required. Disturbance generally includes vegetation clearing of a fire-break around the camp and slashing within the camp perimeter.

2.3 Targeted Minerals
The primary target minerals of the exploration programme are uranium and gold. Chemical analysis for other elements that could influence the metallurgical response of the ore, or be of secondary economic importance, is also conducted.

2.4 Workforce
LCR’s workforce within the project area at any one time would average 3-10 people as both permanent and casual staff (including Traditional Owners). Contractor numbers vary, but would average 5-7 people.

LCR has a policy to employ local Traditional Owners where possible. Employment arrangements will be flexible so that local employees can attend to their community and cultural obligations. Employment opportunities will include Cultural and Environment Monitors (CEMs) and Exploration Field Assistants. Training will be provided as required.

2.5 Site Infrastructure & Location
Camp Caroline is a semi-permanent exploration camp owned and operated by Lagoon Creek Resources Pty Ltd. The Camp is located approximately 25km due south of the Savannah Highway, on the southern part of EL 29898 in the Northern Territory.
The Camp was constructed in 2007 on an area of already cleared ground, adjacent to an old existing 1.2km long gravelled airstrip (dating back to at least 1971). An approximate calculation of the cleared ground at the Camp (excl. airstrip) has been undertaken and estimated to be around 7,000m².

Camp Caroline currently comprises an arrangement of metal containers converted into a series of bedroom dongas (36 individual rooms), shower block, kitchen, offices and store rooms, etc, as shown on Figures 4 & 5. In addition, a metal framed core-shed, 4 storage containers and an airstrip are located a few hundred metres to the north of the main Camp. Drill core from approximately 191 drill holes is stored at the Camp, some of which is radioactive. The camp also has 2 petrol diamond core saws, located in the core shed, which drain into a fenced off sump area. Minor services have been installed on site in the form of underground electrical cables, and foul water – the latter of which falls into septic tanks. Electricity at the Camp is produced by 2 gensets and fuel is stored on site in two self-bunded 27,000L diesel fuel tanks. Water is sourced from a combination of rainwater tanks, and a bore to the south of the Camp.

LCR operate several uranium and gold exploration projects in Queensland and the Northern Territory which utilise Camp Caroline (Figure 3). These projects involve a combination of on-ground exploration including stream sediment and soil sampling, ground scintillometer surveys, rock chip sampling, and geological mapping. Diamond core drilling is also undertaken. Generally during a field season, personnel are located at the Camp, dependent on the amount of work available. When the camp is vacated, several measures are taken to ensure no risk to the environment including turning off power and equipment and securing the Camp. Short-stay check-up visits may also be undertaken if the Camp is closed for longer periods.
Figure 4: Camp Caroline Aerial View
Figure 5: Campsite Layout and Infrastructure Plan
2.6 Transport and Site Access

Access to Camp Caroline is generally gained by 4WD via the seasonally open Savannah Highway, then via established Westmoreland Station owned tracks leading onto the Wollogorang pastoral lease to the Camp.

Due to the proximity of the tenement from the Camp, work areas can be easily gained via existing tracks.
3 EXISTING ENVIRONMENT

3.1 Land Area Type

The tenement is part of the Gulf Fall and Uplands bioregion comprising scattered low, steep hills on Proterozoic and Palaeozoic rocks. The soils are skeletal or shallow sands. Other areas can comprise strike ridges and intervening valleys, with the shallow cover being siliceous sands. The vegetation over the region predominantly comprises open and general woodland, with a small amount of open forest. From on-ground work, areas are generally dominated by spinifex and scattered eucalypt.

3.2 Geology

The Westmoreland region lies on the Palaeoproterozoic Murphy Tectonic Ridge that separates the Palaeoproterozoic Mt Isa Inlier from the Mesoproterozoic McArthur Basin and the flanking Neoproterozoic South Nicholson Basin. Early Proterozoic sediments, volcanics and intrusives of the Murphy Metamorphics are the oldest rocks exposed in the area and are overlain by two Proterozoic cover sequences. The oldest cover lying unconformably on the Inlier is the Cliffdale Volcanics comprising over 4000m of volcanics of probable sub-aerial origin, over half of which is ignimbrite and the rest of which is rhyolite. They are comagmatic with the Nicholson Granite and together comprise the Nicholson Suite. The Tawallah Group unconformably overlies the Nicholson Suite and is the oldest part of the southern McArthur Basin. The base contains conglomerates and sandstones of the Westmoreland Conglomerate that thin towards the southeast and are overlain by andesites, basalts agglomerates, tuffs and sandstones of the Seigal Volcanics. Together the Westmoreland Conglomerate and Seigal Volcanics make up two thirds of the total thickness of the Tawallah Group. Although not represented here the volcanics are in turn overlain by the McDermott Formation, the Sly Creek Sandstone, the Aquarium Formation and the Settlement Creek Volcanics.

3.3 Hydrology

Ephemeral gullies drain the prospect areas and flow into Branch and Lagoon Creeks. Most drainages, both major and minor, dry out completely throughout the dry season.

LCR’s proposed exploration activities are unlikely to have any impact on the water resources of the area.

3.4 Flora & Fauna

A flora and fauna report has been undertaken by Charles Darwin University and is attached as Appendix 2.
The report advises of the following introduced plants, which have been identified as problem weeds in one or more locations in northern Australia, however, no weeds of national significance:

- Awnless Barnyard Grass
- Bitter Broom
- Flannel Weed
- Hyptis
- Khaki Weed
- Noogoora Burr
- Nutgrass
- Spiked Malvastrum
- Spiny-head Sida
- Starbuurr
- Townsville Lucerne
- Ulcardo Melon

Potential Weeds of National Significance in the project area may include:

- Prickly Acacia (Acacia nilotica)
- Mesquite (Prosopis palladia)
- Parkinsonia (Parkinsonia aculeata)

The following animals have been identified as pests, not of national significance:

- Cane Toad
- Asian House Gecko
- Rock Dove
- Red-tailed Black-Cockatoo
- Sulphur-Crested Cockatoo
- Agile Wallaby
- House Mouse
- Black Rat
- Dingo / Wild dog
- Cat
- Donkey
- Horse
- Pig
- Swamp Buffalo
- and Cattle

Furthermore, the following fauna has been listed as threatened species:

- Gulf Snapping Turtle (national status; endangered)
- Mertens’ Water Monitor (vulnerable)
- Yellow-spotted Monitor (vulnerable)
- Emu (vulnerable)
- Red Goshawk (national status; vulnerable)
- Australian Bustard (vulnerable)
- Night Parrot (national status; endangered)
- Purple-Crowned Fairy-Wren (national status; vulnerable)
- Carpentarian Grasswren (endangered)
- Gouldian Finch (national status; endangered)
- Carpentarian Rock-rat (national status; endangered)

LCR does not permit its employees or contractors to bring feral animals to the site. LCR has no specific plans to control feral animals, however, assistance may be provided to Traditional Owners if requested.

As disturbance will be minimal, it is considered unlikely any of the above will be affected in proposed work areas.

Habitat modification and loss as a result of altered burning regimes and weed invasion are key threatening processes for many species. LCR has specific procedures in place both to ensure weeds are not spread as a result of our activities and to ensure that wildfires are not started. In addition, any new weeds that are identified will be reported to the DME and NRETAS, as per the Weed Management on Mine Sites Advisory Note, which is found on the DME website.

3.5 Current Land Use

EL23573 is mainly situated on a pastoral lease – “Wollogorang Station”.
3.6 Historical, Aboriginal, Heritage Sites

An inspection of the register for recorded and registered sacred sites was undertaken through Aboriginal Areas Protection Authority. There has been a registered sacred site identified within the boundaries of the exploration license. Please refer to Appendix 4.
4 ENVIRONMENTAL MANAGEMENT

4.1 Environmental Management System

LCR considers environmental management as core business to its operations. LCR business is focused on uranium exploration either side of the Northern Territory / Queensland border and management policies are therefore focused specifically on these activities. LCR’s Environmental Management is based on a risk management approach combined with a strong focus on indigenous community consultation and involvement with implementing operational plans and procedures to protect the environment.

LCR’s Environmental, Safety and Social policies are built on the following principles:

- Leadership – commitment and active involvement from management;
- Experience – experienced personnel are required in the field to supervise and mentor staff and contractors;
- Vigilance – constant awareness of potential risks and prompt attention to mitigate risks;
- Accountability – clear responsibilities and accountabilities are defined for all personnel. Accountability to indigenous landowners is emphasised by openness and direct involvement;
- Training – all field personnel must be provided with appropriate guidance and training to undertake their duties safely and professionally;
- Well defined work procedures – incorporate risk management controls for environment, health and safety, technical and social risks into work procedures in an integrated manner;
- Resources – appropriate resources and equipment will be supplied to operate professionally.

Environmental management plans are developed from hazard identification processes and in consultation with local stakeholders. Control measures are incorporated into planning of each field programme based on the Risk Control Hierarchy of:

- Elimination of hazard;
- Substitution of hazardous processes or materials;
- Engineering controls;
- Procedural controls;
- PPE.
Finally the control measures are implemented by inclusion into operational procedures for each field activity which form the basis for staff and contractor induction, training and supervision. Traditional Owners are engaged as Cultural and Environmental Monitors (CEMs) to monitor the day to day implementation of control measures as an independent community based accountability and audit process.

Contractors will be required to comply with all LCR’s management policies and operating procedures.

4.1.1 Environmental Policy

LCR’s commitment to the environment is defined in its Environmental Policy.

Operationally, LCR’s objectives will be achieved by:

- Open and accountable communication with regulators and local communities;
- Compliance with environmental laws, regulations and conditions as a minimum standard;
- Consultation with Traditional Owners to ensure control measures meet local community and cultural standards;
- Incorporating risk assessment and hazard Identification into operational and business planning;
- Incorporating risk control hierarchy principles into control measures;
- Ensuring experienced personnel are involved with all aspects of operations and that all personnel have appropriate training and guidance;
- Minimising waste;
- Undertaking progressive rehabilitation of exploration disturbance to best practice industry and community standards.

4.1.2 Environmental Aspects and Impacts

The key environmental aspects considered to be important in the assessment of environmental impacts for the Lagoon Creek Project, are outlined in Table 4 - Environmental Aspects and Impacts. Due to the nature of exploration activities, a qualitative risk assessment has been undertaken on the various aspects of work which can be undertaken. Risk assessments will be reviewed regularly in consultation with local stakeholders once fieldwork commences.
<table>
<thead>
<tr>
<th>Aspect</th>
<th>Rating</th>
<th>Impact</th>
<th>Management Measure</th>
<th>Rehabilitation</th>
</tr>
</thead>
</table>
| Access Tracks | M | Erosion risks, particularly on sloping terrain, sediment runoff from roads into creeks | - Minimise tracks.
- Ensure tracks properly formed.
- Utilise proper track alignment and gradient in sloping areas.
- Blade up grading.
- Erosion controls including diversion drains and “whoa boys” | - Closure of roads at end of dry season that are not to be used the following year.
- Erosion controls established to minimise erosion over wet season.
- Permanent rehabilitation of newly constructed roads when no further use required. |
| | L | Dust generation | - Blade up track clearing
- Speed limits <50km/hr | - Closure of roads and rehabilitation. |
| | M | Damage to habitat, Roadkill | - Divert tracks around trees and dense stands of vegetation.
- Supervision by Traditional Owners (CEMs).
- Limit speed <50kph. | - Closure of roads and rehabilitation. |
| | M | Damage to Cultural sites | - Supervision by CEMs and planning of tracks with Traditional owners input.
- Reference to cultural heritage maps. | - Avoid cultural sites.
- Consultation with Traditional Owners. |
| | H | Weed Invasion | - See Weed management Plan.
- Mapping of weed areas along tracks for seasonal treatment. | - Ongoing monitoring of treated areas and follow up spraying. |
| | H | Safety on Tracks | - Limit speed <50km. | - Close off roads when programmes are finished |
| Fire Management | H | - Uncontrolled “hot” fires. | - Conduct controlled burns around camp sites and drilling areas as firebreaks.
- Burning to be | - Use emergency back burning if feasible contact and liaise with Bushfire council.
- Notify local communities. |
<table>
<thead>
<tr>
<th>Drill Pads and Sumps</th>
<th>M</th>
<th>-Damage to cultural sites or food sources.</th>
<th>-Undertaken with approval and/or supervision of Bushfires Council and Traditional owners.</th>
<th>-Monitor fire.</th>
</tr>
</thead>
</table>
| | M | -Erosion risks.
-Damage to habitat.
-Risks to fauna (drill sumps).
-Overflow of sludge into watercourses. | -Construct sumps properly with sufficient volume.
-Bund down slope side of sumps.
-Construct sumps with sloping entrance to allow fauna to escape.
-In problematic areas use above ground tanks with bunded plastic underlay.
-Remove sludge off-site to a safe disposal site. | -All sumps to be rehabilitated prior to wet season. |
| Drilling | M | Fuel and fluid spills | -Fuel lines, valves checked daily.
-Containment or plastic sheeting to be placed under fill points. | -Absorbent matting and “kitty litter” kept with rig at all times.
-All spills cleaned up. |
| | M | -Drill return water and sludge overflows. | -Contain flows with bunding.
-Ensure sumps constructed properly.
-Cease drilling if fluid escapes containment areas until control measures are in place. | -Leaks and spills to be dealt with immediately and remediated. |
| | H | -Uncapped drill holes risk to small fauna | -Backfill and Cap holes on completion and concrete collar. | -Backfill and Cap holes on completion and concrete collar. |
| | M | -Contamination of groundwater. | -Use biodegradable drilling fluids.
-Avoid hydrocarbon spills. | -Backfill and if necessary grout drillholes on completion. |
| | M-H | -Water supply
-Pumping water from sensitive sites.
-Pumping water holes dry. | -Source water from substantial or flowing water courses in consultation with Traditional owners.
-Monitoring by CEMs. | |

Lagoon Creek Resources Pty Ltd
| M-H | Exposure of drill sludge to rainfall run-off and fauna.
Radionuclide runoff and radiation safety. | For in ground sumps, allow drilling water to evaporate then in fill sump with 1m of compacted soil.
For above ground tanks, remove sludge in suitable container to appropriate burial pit and cover with 1m of compacted soil. | Check progress of rehabilitated sites.
Radiation monitoring checks of backfilled sumps and burial pits. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Rubbish left on site.</td>
<td>Ensure all rubbish is removed from site at the completion of each drill hole.</td>
<td>Remove any rubbish found on project area.</td>
</tr>
</tbody>
</table>
| H | Potential fire/bushfire risk due to general drilling machinery operation and maintenance, in particular hot work | Ensure drill site is clear of vegetation which could contact with drilling machinery
As necessary, conduct controlled burns around drilling areas as firebreaks (burning to be undertaken with approval and/or supervision of Bushfires Council and Traditional owners)
Ensure all hot work is conducted in an appropriately controlled manner using shielding etc
Ensure safe storage and handling of fuels and other flammable materials. Conduct regular rig maintenance to check for leaking fuel lines and other potential fire risk areas
Provide all necessary fire fighting equipment e.g. extinguishers of | Use emergency back burning if feasible, contact and liaise with Bushfire council.
Notify local communities.
Monitor fire. |
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Lagoon Creek</td>
<td>Resources</td>
</tr>
<tr>
<td>L</td>
<td>Mine Management Plan</td>
<td>Lagoon Creek Resources Pty Ltd</td>
</tr>
<tr>
<td>Page</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>-Artesian flows from exploration drill holes</td>
<td>-In the unlikely event that artesian flows are encountered, the holes will be plugged and capped in accordance with statutory requirements and DME Advisory Note AA7-008</td>
</tr>
<tr>
<td>Vehicle Access</td>
<td>H</td>
<td>-Spread of weeds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-See Weed Management Plan Section of MMP</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>-Injury to people and fauna</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Limit speed to 50km/hr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Induction.</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>-Erosion from tracks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Proper road alignment and drainage</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>-Dust</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Limit Speed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Blade up grading.</td>
</tr>
</tbody>
</table>

Mapping	**M**	-Interference with significant or restricted access sites.
		-Avoid sites by reference to updated Cultural Heritage Maps and liaison with Traditional Owners.
	H	-Spread of weeds
		-See Weed management Plan
	L	-Rubbish
		-Bring all rubbish back to camp
	M	-Uncontrolled fires
		-No fires to be lit outside of controlled burns.

<table>
<thead>
<tr>
<th>Camp Management</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Storage</td>
<td>M-H</td>
<td>-Fuel Spills</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Fuel store within bunded areas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Fill points and valves to be checked and kept in good order.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Fuel spills to be remediated.</td>
</tr>
</tbody>
</table>
4.1.3 Objectives and Targets

LCR’s objectives for the 2016/17 field season are as follows:

- Continue good communications with regulators and local communities;
- Minimise impact to the environment and heritage in accordance with community and regulatory standards;
- Compliance with environmental laws, regulations and conditions as a minimum standard;
- Consultation with Traditional Owners to ensure control measures meet local community and cultural standards;
- Incorporating risk assessment and hazard identification into operational and business planning;
- Ensuring experienced personnel are involved with all aspects of operations and that all personnel have appropriate training and guidance;
- Minimise waste;
- Undertaking progressive rehabilitation of exploration disturbance to best practice industry and community standards.

4.1.4 Induction and Training

Prior to undertaking any field activities all staff and contractors are required to undertake field inductions, which includes environmental, cultural and safety issues. A general induction
includes all aspects of the Environmental Management Plan (EMP – refer Section 4.2). More
detailed induction and training is provided for the following environmental aspects:

- Environmental issues and protection;
- Safety and environmental incident reporting;
- Radiation management;
- Weed management;
- Cultural awareness.

In addition to the inductions, during busy periods at Camp Caroline daily briefings are held to
discuss specific issues pertaining to the days operations. During these periods, weekly ES&H
meetings may also be carried out where environmental aspects of the operation will be
discussed. All induction records and ES&H meetings will be maintained in electronic and hard
copy format.

4.1.5 Consultation

LCR have a policy of open and continuous consultation with stakeholders. In relation to the
Traditional Owners of the area, this is facilitated in part by employing Cultural and
Environmental Monitors during the field season. LCR will consult with the NLC on these
matters. In addition, LCR will consult with DME and ERISS for technical advice as required.

4.1.6 Emergency Procedures and Incident Reporting

As part of LCR’s operating management system all environmental incidents, near misses and
hazards are to be reported. LCR will notify relevant authorities of any environmental incident
that results in non-compliance with regulatory conditions within 24 hours of the event
occurring. Various procedures will be tested on a regular basis. LCR will implement the
following steps in the event of an environmental incident:

- Undertake immediate inspection, temporary control and internal notification to
 management and outside authorities if relevant;
- Notification of Traditional Owners’ representative (Monitor);
- Identify corrective actions to be undertaken to mitigate any adverse consequences;
- Follow up to ensure corrective actions are implemented;
- Identify changes to work procedures to ensure the incident does not re-occur;
- Emergency response is supported by SAT phones in vehicles and Camp Caroline,
 Emergency Position-Indicating Radio Beacons (EPIRB), first aid kits, adequate provision
 of drinking water, and fire extinguishers, in all vehicles.
LCR has a range of Emergency Procedures in place including:

- Medical Evacuation Procedure;
- First Aid Emergency Response Procedure;
- Search and Rescue Emergency Response Procedure;
- Helicopter Search and Rescue Emergency Response Procedure;
- Bushfire Emergency Response Procedure;
- Fire Emergency Response Procedure;
- Radioactive Spill Response Procedure.

LCR has a current Risk Management Plan with NT WorkSafe.

All reportable incidents will be notified to NT WorkSafe as required under the Work Health and Safety (National Uniform Legislation) Act 2011 and Regulations 2011. The NT WorkSafe Incident Notification Form FM137 will be used for reportable notifications.

Severity of environmental incidents will be initially assessed using the matrix provided in the DME Guideline ‘Environmental Incident Reporting’, and incidents rating ‘Class 2’ and above will be reported to the CEO of DME in accordance with the procedures set out in the Guideline. A register will be kept on site documenting environmental incidents. In addition, LCR have no environmental incidents documented in the last reporting period.

4.1.7 Environmental Audits and Inspections

LCR undertakes continual review to ensure compliance with management system requirements and to facilitate continuous improvement. The site manager / environmental consultant will carry out inspections to identify environmental concerns and ensure remedial actions are taken. As part of its field operations, LCR will engage Cultural and Environment Monitors as a continuous community auditing and accountability process.

Further audits/inspections may be conducted from time to time by external consultants including:

- Traditional Owners;
- Regulatory authorities and key stakeholders;
- ES&H Consultants.
4.1.8 Documentation

All incidents will be reported to the LCR Management and DME. All employees and contractors are briefed on the procedures and documentation required in case of an emergency at site inductions. Incident reporting forms allow staff to review and take corrective and preventative action for the future. Environmental incidents rated Class 2 and above will be documented and reported as detailed in Section 4.1.6.

4.2 Environmental Management Plan

Where contracting organisations have an EMP, this will be evaluated prior to, or immediately following, mobilisation to the field. Where a contractor does not have an EMP, or the system is deemed deficient, contractors will be required to comply with LCR systems.

4.2.1 Water Management

The objective of water management is to ensure that exploration activities do not cause contamination of ground and surface water.

It is anticipated that groundwater may be extracted from a water bore near Camp Caroline for the proposed drilling.

Minor spillages of hydrocarbons may impact on groundwater and surface water. Measures are in place to ensure that the potential for spillage of hydrocarbons and other hazardous materials is minimised and any spillage is cleaned up and the area rehabilitated. A hydrocarbon and chemical spill protocol has been prepared to guide any necessary clean-up operations. In addition, dust emissions from vehicles may impact upon surface water.

Due to the minimal clearing required to construct drill pads, it is considered any impacts to surface water courses on the project area would be negligible. Impact to surface water courses can, however, result from vegetation clearing and drilling activities, including:

- impacts to the shape, location and profiles of water courses from clearing;
- increased sediment load resulting in alteration of depositional pattern of the watercourses;
- pollution potential from erosion from disturbed areas, and spillages from exploration activities; and,
- dust emissions from drill rigs and vehicles.

Surface water management includes minimising any impacts on natural surface drainage patterns and, including:
• rehabilitation of access tracks crossing drainage lines after significant/erosive flood flow;
• best practice drill rig pad management, including topsoil and vegetation management, and construction of small bunds to divert surface runoff around disturbed areas and access tracks;
• ensure spillages are cleaned up and rehabilitated;
• reducing dust emissions (see section 4.4.1).

Containment of drilling water returns within drill sumps and/or tanks, with evaporation of the water before sumps being backfilled, and rehabilitation of the drill sites prior to the onset of the wet season. LCR does not allow drilling returns to run into natural drainage.

4.2.2 Weed Management Plan

LCR understands that the spread of weeds is of particular concern to the NLC, Traditional Owners and local land care groups. LCR understands that weed outbreaks can occur due to the activities of explorers. Protection of the area from weed invasion will focus on the prevention of spreading weed seeds, and the control of weeds that may be accidentally introduced. Procedures include:

• Training of all LCR personnel in weed identification and control procedures, including colour copies of principal problem weeds will also be in circulation to assist weed recognition in the field;
• Designated wash-down areas for all vehicles and equipment. LCR personnel ensure vehicles and equipment are washed down and documented prior to departing Camp Caroline;
• The designated wash-down area at Camp Caroline feeds into an adjacent sump. This site is monitored for any emergent weeds;
• A Vehicle Clearance Form is filled out when vehicles are washed down, prior to departing site. Completed forms are filed at Camp Caroline;

LCR has undertaken in-house flora studies over the Westmoreland project area in Queensland, and no weeds listed in the Land Protection Act 2002, or as Weeds of National Significance were observed. The weed control measures will be reviewed and updated on an ongoing basis. Should any weeds be identified as new to the area, prompt contact to the Weeds Officer of the Weeds Management Branch, NT Department of Land Resource Management (DLRM) will be made.
4.2.3 Flora & Fauna Management

Effective management of flora and fauna aims to minimise disturbance, avoid known priority flora locations and to ensure effective progressive rehabilitation. Management practices to be employed are:

- Use old and existing tracks where possible;
- Minimise the number of new tracks constructed;
- Avoid clearing established trees and dense stands of vegetation;
- Rehabilitate disturbed areas as soon as practicable;
- Ensure all staff are inducted in relation to fire management.

The objective of fauna management is to minimise disturbance to fauna through exploration activities. Potential impact of exploration activities on native fauna is the displacement or loss of species or habitat during vegetation clearing operations. Other potential impacts could be:

- Hydrological changes and changes to surface water quality;
- Disturbance at important areas (i.e. waterholes) by personnel;
- Road kill;
- Fire.

Key actions for fauna management include:

- Minimising disturbance to vegetation and potential fauna habitats;
- Prohibiting firearms and domestic pets on site;
- Educating people on the importance of not disturbing wildlife;
- Limiting vehicle speeds to reduce the potential for road kills;
- Managing refuse to prevent attraction of feral animals;
- Training in fire prevention and management (see Section 5.5);
- Feral animal control programmes may be implemented if required; this will be done in consultation with relevant agencies.

4.2.4 Waste Management

Waste is produced by many exploration activities. The exploration programme will generate a number of different types of wastes, and may include the following:

- Organic debris (i.e. food scraps);
- General refuse (i.e. scrap metal, cardboard and plastics);
- Hydrocarbon wastes (i.e. oil filters);
- Sewerage;
• Small quantities of Naturally Occurring Radioactive Material (NORM) from drilling.

Most waste generated from the exploration activities will be returned to Camp Caroline. Any ‘industrial waste’ (i.e. tyres, oils, steel and hydrocarbon contaminated material) is generally transported to Mt Isa for disposal. Most waste that can be recycled is transported to Mt Isa or recycled at relevant licensed premises. In addition, all domestic refuse is disposed of in a pit at Camp Caroline and burned on a regular basis and covered with dirt. Any NORM waste materials generated from drilling will be either put back down the drill holes or buried in a pit with at least 1m of soil on top. Any waste generated from projects operated by LCR in Queensland will be disposed of in Queensland.

Camp Caroline has a septic system for collection of black-waters. Septic tanks are emptied by a specialist contractor as required.

4.2.5 Noise & Air Quality Management

Noise generated from exploration activities may impact on fauna and people in the vicinity of the project. Impact on the local community is expected to be minimal due to the remoteness of exploration operations.

Dust control and management is to ensure that dust generated from exploration activities does not cause contamination of water and soil.

Management measures to ensure environmental dust emissions are minimised include:

• Equipment/water to suppress dust from drill rigs;
• Limiting vehicle speeds whilst driving on site;
• Minimising vegetation clearing/disturbance.

All machines are fuelled with diesel which burns to produce water, carbon dioxide, carbon, and in most cases, some sulphur-based emissions. These are not likely to cause significant problems in the remote open air environment of the Permit.

4.2.6 Cultural & Heritage Management

Cultural and heritage management measures aims to minimise the impacts to cultural and heritage sites. This is achieved through effective education of personnel working on the project and continuous liaison with the Traditional Owners.

Aboriginal heritage and cultural site management is covered in the field inductions for all personnel.

Cultural awareness training courses can be provided to employees and contractors.
4.2.7 Hazardous Material & Hydrocarbons Management (not Radiation)

Diesel is used for most exploration activities – this is stored in 2 self-bunded tanks of 27,000 litre capacity at Camp Caroline. Unleaded petrol (up to 1500 litres) and Jet A-1 (up to 5000 litres) may also be stored in smaller amounts at Camp Caroline, depending on demand, which is stored in 200 litre drums. LCR ensures the following is undertaken:

- Transportation and storage of hydrocarbons in accordance with applicable regulations and codes;
- Use suitable methods for refuelling operations to prevent spillage;
- Use of plastic sheeting under small stationary motors to catch any spillage;
- Disposal of any hazardous/hydrocarbon waste in a manner that minimises any potential impacts, and disposal to a registered disposal site where required;
- Cleaning up of any spills and remediation of contaminated areas;
- Have emergency spill kits on hand;
- Hydrocarbon management protocol.

4.2.8 Radiation Management

The objective of radiation management is to ensure that all activities conform to the “As Low As Reasonably Achievable” (ALARA) principle.

Much of the material encountered during uranium exploration activities is not mineralised and does not contain radioactive materials in quantities significant enough to present a risk to workers or the environment. When mineralised zones are discovered, the main radioactive materials encountered may include naturally occurring uranium, thorium, radon and its decay products.

To ensure all radiation risks are effectively managed, LCR has a Radiation Management Plan (please refer to Appendix 7).

The Radiation Management Plan (RMP) includes requirements for:

- Monitoring;
- Dose assessment;
- Transport requirements;
- Sample handling;
- Storage;
- Waste management and controls;
- Worker inductions and training;
• Personal hygiene control;
• Recordkeeping and reporting.

A Radiation Induction is mandatory for all relevant LCR personnel and contractors.

4.2.8.1 Radiation Sources
The principal sources of ionising radiation during exploration include:

• Inhalation of dust containing uranium mineralisation (the effective dose equivalent being largely due to the presence of long-lived alpha-emitting radionuclides in the uranium decay series);
• Direct exposure to gamma radiation;
• Inhalation of the decay products of radon gas;
• Ingestion (principally associated with contamination).

Of these sources, the inhalation of dust is likely to be the greatest source of effective dose equivalent (i.e. ‘dose’). Gamma ‘shine’ from cores and drill chips grading 0.1 % U3O8 is a minor secondary contributor to dose. Radon decay products (variously called ‘radon daughters’ or ‘radon progeny’) will contribute insignificantly to dose, since in unconfined atmospheres, they dilute and disperse rapidly. Ingestion of uranium-bearing mineralised contamination is a trivial source of dose, not only because ingestion is unlikely but also because uranium in its native form is almost wholly insoluble in the body and will pass through the gut without transferring to internal organs. Experience at other exploration sites over many years would indicate that individual doses to exploration personnel are unlikely to exceed one or two millisiverts per year (1-2 mSv/y).

Based on the proposed work, the following exploration activities which could expose individuals and the environment to ionising radiation include:

• Drilling;
• Core handling and transport;
• Core cutting and examination;
• Sample handling and transport;
• Disposal of drilling cuttings and sludge;
• Rehabilitation of drill pads and sumps;
• Core storage;
• Environmental and occupational monitoring.
- Traversing mineralised outcrops;

Table 5 shows major risks associated with uranium exploration and mitigation matrix for these activities.

4.2.8.2 Storage

The storage of radioactive material in the Northern Territory is governed by Radiation Protection Act 2009, however, mining and related activities are exempt from this Act. LCR stores the majority of its drill core in a core storage area at Camp Caroline. Radioactive drill core from Queensland has been stored at Camp Caroline since the end of 2007. Any samples collected during the exploration activities which require storage will be kept within the designated storage area.

In the long term, if one of LCR’s projects develops to a mining stage, the Camp together with the Queensland core/material would be moved to that location. In this case, the Queensland core would be stored within a new designated core storage area for reference, sent to the mill for production, or disposed of. In the event of disposal LCR would seek approval permits in an approved manner.

4.2.8.3 Transport

Mineralised samples sent off-site for testing will be packed and transported in accordance with Northern Territory and Commonwealth Legislation. Samples sent to external laboratories will be accompanied with ‘chain-of-custody’ records, and will be returned to the site for disposal or storage after they are no longer required for laboratory analysis. All radioactive material will be transported in accordance with ARPANSA’s Code of Practise for Safe Transport of Radioactive Material, 2008.
Table 5: Radiation Risk and Mitigation Matrix

<table>
<thead>
<tr>
<th>Activity</th>
<th>Principal Dose Pathway</th>
<th>Mitigation Measures</th>
<th>Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling</td>
<td>- Inhalation of LLAD</td>
<td>- Dust collection device</td>
<td>- Personal dust sampling</td>
</tr>
<tr>
<td></td>
<td>- Direct gamma</td>
<td>- Respiratory protection (dust mask)</td>
<td>- Alpha-counting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- TLD</td>
</tr>
<tr>
<td>Traversing mineralised outcrops</td>
<td>- Direct gamma</td>
<td>- Time management</td>
<td>- TLD</td>
</tr>
<tr>
<td>Core/sample handling, cutting,</td>
<td>- Direct gamma</td>
<td>- Time management</td>
<td>- TLD</td>
</tr>
<tr>
<td>examination and transport</td>
<td>- Ingestion of dust</td>
<td>- Wash hands</td>
<td></td>
</tr>
<tr>
<td>Sample storage</td>
<td>- Direct gamma</td>
<td>- Time management</td>
<td>- TLD</td>
</tr>
<tr>
<td></td>
<td>- Inhalation of RDP</td>
<td>- Ventilation</td>
<td>- Personal air/dust sampling</td>
</tr>
<tr>
<td>Disposal of drilling cuttings</td>
<td>- Inhalation of LLAD</td>
<td>- Dust suppression (water spray)</td>
<td>- TLD</td>
</tr>
<tr>
<td>and sludge</td>
<td>- Direct gamma</td>
<td>- Time management</td>
<td>- Personal air/dust sampling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Burial</td>
<td></td>
</tr>
<tr>
<td>Rehabilitation</td>
<td>- Inhalation of LLAD</td>
<td>- Dust suppression (water spray)</td>
<td>- TLD</td>
</tr>
<tr>
<td></td>
<td>- Direct gamma</td>
<td>- Time management</td>
<td>- Personal air/dust sampling</td>
</tr>
<tr>
<td>Monitoring</td>
<td>- Direct gamma</td>
<td>- Time management</td>
<td>- TLD; Instant Read Dosimeters</td>
</tr>
<tr>
<td></td>
<td>- Inhalation of LLAD</td>
<td>- Ventilation</td>
<td>- Personal air/dust sampling</td>
</tr>
</tbody>
</table>

* Long-Lived Alpha-emitters in Dust (LLAD)
* Radon Decay Products (RDP)
* Thermo-Luminescent Dosimeter (TLD)
* Time management: simply means not spending time near the activity if not actually working. Thus breaks should be taken away from the activity area.

4.2.8.4 Contamination

Mobile equipment used in the proposed exploration programme may become contaminated with uranium-bearing material. A radiation clearance will be conducted prior to any vehicles and mobile equipment leaving Camp Caroline. All subject items will be analysed for contamination using alpha and gamma radiation detectors, and any contaminated items will be cleaned and re-tested until they pass inspection. A record of all equipment inspected will be maintained.
Areas where drill-rigs and sumps are established will first be surveyed using gamma dose-rate meters. Following rehabilitation, these areas will again be surveyed to detect any change in gamma dose-rate. These measurements will be used to monitor rehabilitation measures.

4.2.8.5 Wastes

All wastes generated by the drilling programme will be classified into categories which reflect the likelihood of contamination.

Radioactive wastes may consist of soil, core samples, RC rock-chip or diamond core drill cuttings, and core sample saw cuttings. LCR proposes the following management of these wastes:

- Diamond drilling sludge, RC rock-chip, core saw cuttings and other collected materials will be disposed and buried beneath no less than 1m of soil;
- Unwanted core samples will be disposed of onsite and buried beneath no less than 1m of soil;
- Following disposal, monitoring will be undertaken to ensure the area does not exceed measured baseline levels;
- The location of all disposal sites will be recorded and inspected to ensure rehabilitation success.

4.2.8.6 Accidents and Incidents

Radiological accidents and incidents that deliver a significant dose to an individual are unlikely at an exploration site, however, there may be a perception of risk. A radiation induction strives to alleviate this perceived risk.

All accidents and incidents will be recorded and an explanation given to any personnel involved. If possible, an assessment will be made of the likely magnitude of any effective dose equivalent delivered.

All incidents will be reported to DME (Form CF7-001) and other relevant Authority.

4.2.8.7 Record Keeping and Reporting

LCR will maintain records of all personnel working on or visiting the exploration site, and will retain an ionising radiation history of employees and contractors who have worked on LCR projects. Records will be maintained of all attendees at induction or training courses.
A three month and annual accumulated dose report is provided by ARPANSA of radiological dose rates collected from the Thermo-Luminescent Dosimeter (TLD) badges worn by on site personnel. These assessments are undertaken by qualified and experienced health physicists at ARPANSA. Information from these assessments is available to all employees and contractors.

4.2.8.8 Training

All employees and contractors working on LCR sites will receive a general radiation induction.

Radiation Safety Officer (RSO) training has been provided to some of the LCR staff. In-house training will be provided to staff that will aid the duties of the RSO.

4.3 Environmental Performance Reporting

Work and camp sites will be inspected routinely and their condition recorded and documented.

Given the minimal work required to establish drill pads on existing tracks and/or pre-existing cleared ground, minimal disturbance is anticipated.

Traditional Owners may be invited to accompany LCR teams during exploration activities.
5 EXPLORATION REHABILITATION

5.1 Status of Current Rehabilitation & Rehabilitation Activities Conducted

Drill holes rehabilitation is undertaken once the drill rig has moved on from the pad and generally consist of plugging the drill hole which is then buried. Drill sumps are dried and buried and any rubbish removed from the area. The drill pads are restored and allowed to rehabilitate with natural revegetation.

Following completion of the 2006 and 2007 drilling the drill holes were plugged and drill sumps were dried and filled. The drill pads were restored and allowed to rehabilitate with natural revegetation. A trip was planned during October 2016 to visit the drill pads to obtain recent monitoring and photographic information on rehabilitation. Unfortunately this trip has been delayed and, because of the impending wet season and logistical issues, is now planned to be undertaken during April/May 2017. Following this trip data showing rehabilitation of these historic drill holes will be provided.

2010 Drilling

Upon completion of the 2010 drilling, the drill holes were plugged, buried, and marked with a wooden peg. The sumps were allowed to evaporate and subsequently in-filled with the stockpiled soil and topsoil. Drill pads were restored as near as possible to original land form shape, with any topsoil and cleared vegetation redistributed over the drill pads, allowing them to self-seed during the following wet season. Post rehabilitation monitoring of rehabilitated areas has been undertaken, and as expected from the minimal disturbance from drilling on pre-existing tracks, the local vegetation (mainly grasses and spinifex, as well as some gum tree saplings) which were present before disturbance grew back. From a visit in late 2012, vegetation regrowth on the pads was considered nearly 100% fully rehabilitated.

In addition, due to the nature of the exploration, radiation monitoring has been undertaken on each pad and sump before, during and after drilling. As expected from the drilling results, no elevated radioactivity was detected as a result of the drilling during the monitoring. Rehabilitation data has been provided to DME and is shown in Appendix 8, further details will be provided following the planned 2017 site visit.

Following the 2010 drilling LCR has not undertaken work involving any significant disturbance.
5.2 Rehabilitation Planning and Monitoring

Rehabilitation of areas disturbed during the exploration programme will be undertaken prior to closing out for the wet season. As access to proposed drilling locations will be along existing tracks, the main disturbed areas from the exploration programme will be drill pads and sumps. The rehabilitation measures for these areas are outlined below:

- **Access Tracks** – will be rehabilitated at the completion of exploration programme if required;
- **Vegetation and any removed topsoil (if any) is respread**;
- **Remove culverts (if any) and re-establish natural drainage pathways (if disturbed)**;
- **If seeding is required, direct seed using local provenance seed**;
- **Demarcate rehabilitated tracks as required**.

Drill Pads – will be rehabilitated following completion or subsequent down-hole probing:

- **Return any drill chips remaining to the hole or in-ground drill sump**;
- **Bury any other potentially uranium mineralised material in the in-ground drill sump**;
- **Plug or cap drill holes with concrete immediately following drilling**;
- **Reshape the pad similar to its original contour and incorporate appropriate drainage**;
- **Spread stripped sub soil and top soil**;
- **Re-spread cleared vegetation over the pad once topsoil has been replaced**;
- **If seeding is required, direct seed using local provenance seed**.

Sumps – will be rehabilitated following drilling:

- **Drilling fluid in the sumps is left to settle**;
- **Evaporate or pump any clarified water/liquids remaining in the sumps into surrounding bushland away from natural drainages**;
- **Backfill the sumps with slight mound to allow for subsidence**;
- **Spread stockpiled topsoil and vegetation**.

Photographs will be taken at all drill sites prior to disturbance, following rehabilitation and at 12 monthly intervals or until rehabilitated. Inspections will monitor the success of regrowth and/or the establishment of weeds. Rehabilitation success will be measured against pre-disturbance landscape and remedial measures will be undertaken if erosion or other processes have shown to affect the rehabilitated site.
5.3 Topsoil Management

Topsoil is considered to be approximately the top 250mm of soil material and includes the surface humus layer of decaying vegetation. The depth of topsoil may vary depending on the geology of the location. Any topsoil or vegetative material removed during the clearing process will be stockpiled separately for use during rehabilitation.

5.4 Revegetation Methods

LCR has found that with the small areas of disturbance involved in drilling programmes, natural re-colonisation of plants rapidly occurs over time, particularly if the topsoil is replaced. If monitoring outlined in section 5.2 shows natural revegetation to be ineffective then seeding with provenance species and/or weed control measures may be undertaken.

5.5 Fire Management

Drill sites are generally small in area and it is not practical to exclude fire from those specific areas.

Upon final rehabilitation of the camp areas a fire break would be maintained for 3-5 years to allow seedlings to mature and develop fire resilience.

5.6 Closure Planning

5.6.1 Drill sites and tracks

All drill sites will be stabilised and closed out at the end of the field season.

Radiation measurements will be taken at each worksite to ensure that there is no radiological contamination of the surface soils.

All drill holes will be plugged using concrete plugs a minimum of 300mm below surface and backfilled. Remaining drill cuttings are dumped in the bottom of the drill sumps at a minimum of one metre below surface. Drill sumps are backfilled and slightly mounded to allow for subsidence. Drill pads are returned to the original contour and any compacted area is scarified. Cleared vegetation matter is respread across the site.

Any uranium mineralised material is buried or removed from site. All rubbish is removed from site.

All disturbed areas will be inspected on completion and the following year to ensure that revegetation is progressing and that weeds have not been allowed to establish. Any sites which require further work will be followed up appropriately.
Photographs are taken prior to disturbance, following rehabilitation and at the 12 month inspection.

On final closure, the Traditional Owners may be consulted.

5.6.2 Camp Site

Closure criteria have not been developed for the rehabilitation of Camp Caroline as it is expected that field activities will be ongoing for some years. The following outlines the general process which would be followed in order to rehabilitate these sites.

Upon cessation of exploration activities in the Westmoreland/Wollogorang area an experienced contractor will be commissioned to remove all infrastructure from the field camp.

Once all infrastructure has been removed, the camp area will require a contaminated site survey and possible remediation. The camp area will then be re-contoured to prevent water ponding or the formation of preferential flow paths leading to soil erosion.

Finally, the camp area will be ripped and revegetated using local providence seed with ongoing monitoring and management required to control weed invasion or fire.

5.7 Costing of Closure Activities

An existing security is currently lodged with the Department. If required by the Department, a revised security spreadsheet can be submitted if drilling of warranted targets is to be undertaken.